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Motivation

• Resonances of high energy particles in magnetic confinement devices

due to electromagnetic instabilities can strongly modify the distribution.

• The existence of a mode particle resonance depends on properties of

the equilibrium, particle trajectories and perturbation mode harmonic

content.

• Different methods for finding resonance location and energy

dependence are developed.

• We show that if mode resonances exist at low particle energy they

very likely also exist at high energy, thus modifying high energy beam

particles and fusion products

• Resonance can exist by mode modification of orbit helicity for large

mode amplitude
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Hamiltonian Guiding Center Code

The equilibrium magnetic field is given by

~B = g∇ζ + I∇θ+ δ∇ψp, (1)

The Hamiltonian is H = (ρ‖ − α)2B2/2+ µB+Φ

α =
∑

m,n
Anαm,n(ψp)sin(Ωmn), Φ =

∑

m,n
AnΦm,n(ψp)sin(Ωmn),

Ωmn = nζ −mθ − ωnt− φn,

We will be interested in poloidal and toroidal motion

θ̇ =
ρ‖B

2

D
(1− ρ‖g

′) +
g

D
(µ+ ρ2‖B)

∂B

∂ψp
,

ζ̇ =
ρ‖B

2

D
(q+ ρ‖I

′
ψp)−

I

D
(µ+ ρ2‖B)

∂B

∂ψp
.

where D = gq+ I + ρ‖(gI
′
ψp

− Ig′ψp).
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Resonance

An unperturbed orbit is periodic in θ and ζ.

For resonance with a mode a particle orbit must periodically return to

experience the same perturbation

This requires, since mode is a function of θ and nζ − ωt

(nωζ − ω)T = 2πp, ωθT = 2πl

ωθ, ωζ average poloidal and toroidal frequencies

ω the mode frequency, n the toroidal mode number

T some time interval, and p, l integers.

p =
(nωζ − ω)l

ωθ
.

This equation must be solved with integers p, l.

5



Poloidal Elliptic Periodicity

The integer p is the number of poloidal elliptic points of the resonance.

Consider a time interval T such that nlωζT = 2πc with c integer

Then we find ωθT = 2πc/p− ωlT/p.

Thus θ = ωθT for c = 0,1,2, ...p− 1 can take on p values in the interval

[0,2π] about −ωlT/p.

The toroidal angle values are ωζT = 2πc/nl, giving nl elliptic points

toroidally with c = 0,1,2, ...nl − 1.

Values of l > 1 correspond to nl toroidal elliptic points instead of n.

Poloidal periodicity is not changed by higher values of l

Because of drift, resonance periodicity in θ is given by one of the poloidal

mode harmonics m only at very low energy.

The drifts cause coupling to higher or lower poloidicity.

For high energy particles the poloidal drift motion is primarily cos(θ),

leading principally to coupling to harmonics with m± 1.
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Orbit Helicity

Most resonances of interest occur in the space of co-passing particles

The particle orbit helicity h is

h =
ωζ

ωθ
, p = nlh−

lω

ωθ
Both ωζ, ωθ approximately linear in v‖.

At high particle energy where nωζ >> ω, p = nlh.

At low particle energy where nωζ << ω, p = −∞.

Except for drift terms proportional to ∂B/∂ψp
which changes sign left or right of the magnetic axis

and terms in g′ and I ′ψp, both small, at low energy h ≃ q(ψp).

At higher energy we note that the drift term for θ is larger

and has the opposite sign of that for ζ.

High energy co-moving particles spend more time

to the right of the axis, where ∂B/∂ψp < 0,

so θ̇ decreases and ζ̇ increases with energy, causing h to increase.

The opposite is the case for counter moving ions.
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q profile and resonances for the n = 3, TAE mode with

10 ≤ m ≤ 23, observed in DIII-D in shot 122117.

Broken KAM surfaces determined by phase vector rotation

p = nlh−
lω

ωθ
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Ellipticity period DIII-D

.

Ellipticity period p = (nωζ − ω)/ωθ
vs energy for three different flux surfaces.

ψp/ψw = 0.2,0.8,0.9.

ωθ and ωζ determined by launching particles.

As the particle energy increases,

both ωζ and ωθ increase linearly in velocity.

The mode transitions from one resonance

to another.

Asymptotic values are reached

over the whole plasma by E = 40 keV.

Values of p = 8,9 are only possible

at energies below 30 keV

9



Poincare

Poincaré plots showing resonances at E = 21 (p = 8), E = 25 (p = 9),

E = 35 (p = 10,10), and E = 44 (p = 12,11,10,10) keV
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ITER

ITER equilibrium and q profile.

Low frequency modes used to try to remove Helium ash,

but energy saturation of p give also resonances at high energy,

causing loss of high energy alpha particle as well as ash.
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Poincare plots for ITER resonance

Poincaré plots, 6 kHZ m/n = 6/4 mode. ITER 20 keV and 1 MeV

Aside from the increased particle drift, the resonance is practically

unchanged even at this high energy. p = 5
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JT60-U.

High value of µ, µB = 194 keV.

Determination of resonances JT60-U

50 kHz 2/1 mode showing two strong

bands of resonances in the center

extending to high energy

There is also a resonance that exists only

below 350 keV, deep in the plasma.

As the energy is increased,

this resonance moves inward

until at 350 keV it passes through

the magnetic axis and thus disappears.
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JT60-U Lowest energy Resonance

Lowest energy resonance

moving to magnetic axis

As the energy increases the

value of p increases, but does

not reach an integer above 1.

p = nh−
ω

ωθ
As energy increases the second

term becomes smaller

There are no lower values of q

so the resonance is driven into

the axis and vanishes
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JT60-U Poincare plots, bottom

Plots at lower value

of nE − ωPζ.

• Bottom- p = 4 resonance

at Pζ = −.05,

Strong p = 1 resonance near

axis.

At all energies the value

of ωζ for the two extended

bands is larger than the

mode frequency by at least

a factor of 20, so they are

at asymptotic energies

regarding the value of p.

The number of poloidal el-

liptic points is 3 at q = 2.5

and 4 at q = 2.
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JT60-U High Energy Resonances

Determination of p in the two resonances going to high energy

p =
(nωζ − ω)l

ωθ
.

Plots of θ(t), ζ(t)

in a resonance band.

ωθ and ωζ determined.

p ≃ 4 left band,

p ≃ 3 right band.

high energy asymptotic regime

Left band l = 2 p = 3,

Right band l = 3, p = 4
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JT60-U Poincare plots

Plots at upper value

of nE − ωPζ.

• Two strong resonancess as

well as a weaker five period

resonance at Pζ = 0.3.

In the left resonance

q ≃ 2.5, l = 2, p = 3.

In the right resonance

q ≃ 2.0, l = 3, p = 4.
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JT60-U Poincare plots, Middle

Plot at middle value of nE−

ωPζ.

• Middle- left resonance

band with three elliptic

points at Pζ = 0.2

two weaker resonances

four elliptic points Pζ = 0.4

five at Pζ = 0.55.
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Examine reversed shear profile to see the effect of q near axis

Much lower µ with µB = 14 keV.

Resonances depend on ωθ, ωζ, not energy.

µB = 194 keV, resonance 250 keV, µB = 14 keV, resonance 40 keV

But they are very similar in shape except near axis

Resonance moves toward the axis and is met by a resonance coming out
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Poincare for JT60 Reversed Shear

Top left, the p = 1 resonance, shown at E = 45, Pζ/ψw = 0,
Top right, the p = 1 resonance, shown at E = 60.5, Pζ/ψw = .37.
Bottom left, Merging of the two resonances at E = 65, Pζ/ψw = .3.
Bottom right, no resonance at E = 75, Pζ/ψw = .35, A = 10−5
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Resonances produced by mode modulation of orbital helicity

Plots of h and p for points

of the initial low energy mode.

We see p = 1,

from 40 to 73 keV.

p > 1 for E > 73 keV

mode modulation resonance

produced at E = 75,

A = 2× 10−4, A = 5× 10−4
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Conclusion

High energy particle resonances are important concerning the existence

of a dense fusion capable particle distribution.

They can modify the distribution and even induce particle loss.

Analytic expression found for p, elliptic points of a resonance.

Energy dependence, with poloidal helicity p vs E given.

Depend on parallel velocity, not energy, so µ not important.

Resonances in DIII-D, ITER, and JT60-U are examined.

Resonances existing at low particle energy are very likely

to persist at higher energy.

Examples of resonance existing only at low energy are found

Resonance can exist by mode modulation of orbital helicity

when p is close to integer.
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